The Limits of Meta-Learning in Artificial Intelligence

Francisco J. Arjonilla (Paco)

Graduate School of Science and Technology Shizuoka University

21st International Conference on Humans and Computers 29th of March, 2019

Two kinds of intelligence

We propose a novel classification scheme for intelligence:

1. Computational problems:

- ✓ Known: Problem <u>Outset and method</u> (i.e. algorithm)
- ✓ Unknown: Target outcome (i.e. solution)

$$O \xrightarrow{m} ?$$

2. Learning problems:

✓ Known: Problem <u>Outset and Target outcome</u> (i.e. desired outcome)

✓ Unknown: <u>m</u>ethod

Solving both kinds of problems

1. Computational problems:

Straightforward solution: Apply the method to the problem outset to arrive to the target outcome.

✓ We call this First Order Intelligence. Analogous to Exploitation.

2. Learning problems:

The solution is not straightforward any more.

$$(O \xrightarrow{?} T) \xrightarrow{m=?(O,T)} (O \xrightarrow{m} T)$$

To solve it, let us define m':=? and convert it to a computational problem. Analogous to Exploration.

Learning prob. as computational prob.

Define the following variables:

Problem Outset of Learning: O' =

m

- Desired Target of Learning: T' =
- Learning method: Applying m' to O' yields T': O' m'

✓ This is a computational problem! We call it Second Order Intelligence.

Example: Making Pancakes for Noobs

- It is your first time making pancakes and do not know how. Then, you have 2 problems:
- First, a learning problem. How to make pancakes?

 Our learning method m' is a web search for pancake recipes, which yields a recipe m, i.e. a method to cook raw materials.

raw ingredients — Pancakes

raw ingredients ------

- You follow the recipe **m** like if you were a robot.
- Now you share the pancakes, eat and relax. (How to share pancakes?)

 $\underline{\mathsf{m}}=\mathsf{m}'(\mathsf{O},\mathsf{T}) \longrightarrow \mathbb{O} \xrightarrow{\mathsf{m}} \mathsf{T}$

Other examples

- First Order Intelligence (Doing):
 - Computer algorithms
 - Driving
 - Most jobs
- Second Order Intelligence (Learning to do):
 - Neural networks
 - Studying
 - Research jobs
- Third Order Intelligence (Learning to learn):
 - Research apprentices
 - Learning to read

4th, 5th, 6th, etc. Order Intelligences (Learn to learn to learn to learn to ...)

Recap: nth Order Intelligences

1 st order	2 nd order	3 rd order		n th order
Model exploitation				
Model exploration	Meta-model exploitation			
	Meta-model exploration	= Meta-meta-model exploitation		
		Meta-meta-model exploration	= • • • •	
			•••=	Exploitation
	I	1	1 1	II
				Exploration

- Preventing order escalation: Exploitation = Exploration
- Exploration modifies exploitation it modifies itself recursive intelligence!
- Deep consequences: Gödel incompleteness theorems, instability, etc.

The Limits of Meta-Learning in Artificial Intelligence

Paco Arjonilla

Thank you for your kind attention